Countable Borel Equivalence Relations
نویسندگان
چکیده
This paper is a contribution to a new direction in descriptive set theory that is being extensively pursued over the last decade or so. It deals with the development of the theory of definable actions of Polish groups, the structure and classification of their orbit spaces, and the closely related study of definable equivalence relations. This study is motivated by basic foundational questions, like understanding the nature of complete classification of mathematical objects, up to some notion of equivalence, by invariants, and creating a mathematical framework for measuring the complexity of such classification problems. (For an extensive discussion of these matters, see, e.g., Hjorth [00], Kechris [99, 00a].) This theory is developed within the context of descriptive set theory, which provides the basic underlying concepts and methods. On the other hand, in view of its broad scope, there are natural interactions of it with other areas of mathematics, such as model theory, recursion theory, the theory of topological groups and their representations, topological dynamics, ergodic theory, and operator algebras. Classically, in various branches of dynamics one studies actions of the group of integers Z, reals R, Lie groups, etc. More generally, one can consider definable (e.g., continuous, Borel, etc.) actions of Polish (i.e., separable, completely metrizable topological) groups on standard Borel spaces (i.e., Polish spaces equipped with their σ-algebra of Borel sets). Most of our emphasis in this paper though will be on Borel actions of Polish locally compact groups. One of the main problems concerning a given definable action of a Polish group G on a standard Borel space X is the complete classification of members of X, up to orbit equivalence, by invariants. (Orbit equivalence being the equivalence relation induced by the orbits of the action.) This is a special case of the more general problem of completely classifying elements
منابع مشابه
Simultaneous Reducibility of Pairs of Borel Equivalence Relations
Let E ⊆ F and E′ ⊆ F ′ be Borel equivalence relations on the standard Borel spaces X and Y , respectively. The pair (E,F ) is simultaneously Borel reducible to the pair (E′, F ′) if there is a Borel function f : X → Y that is both a reduction from E to E′ and a reduction from F to F ′. Simultaneous Borel embeddings and isomorphisms are defined analogously. We classify all pairs E ⊆ F of smooth ...
متن کاملTreeable equivalence relations
There are continuum many ≤B-incomparable equivalence relations induced by a free, Borel action of a countable non-abelian free group – and hence, there are 20 many treeable countable Borel equivalence relations which are incomparable in the ordering of Borel reducibility
متن کاملPopa Superrigidity and countable Borel equivalence relations
We present some applications of Popa’s Superrigidity Theorem to the theory of countable Borel equivalence relations. In particular, we show that the universal countable Borel equivalence relation E∞ is not essentially free.
متن کاملCountable Borel equivalence relations, Borel reducibility, and orbit equivalence
ing from the proof given above for Gaboriau-Popa we obtain theorems such as: Theorem 2.10 Let (X, d) be a complete, separable metric space equipped with an atomless Borel probability measure μ. Suppose Γ acts ergodically by measure preserving transformations on (X,μ) and the action on (X, d) is expansive. Let (Et)0<t<1 be a collection of distinct countable Borel equivalence relations on X with:...
متن کاملar X iv : 1 30 6 . 12 70 v 1 [ m at h . L O ] 6 J un 2 01 3 UNIVERSAL COUNTABLE BOREL QUASI - ORDERS
In recent years, much work in descriptive set theory has been focused on the Borel complexity of naturally occurring classification problems, in particular, the study of countable Borel equivalence relations and their structure under the quasi-order of Borel reducibility. Following the approach of Louveau and Rosendal for the study of analytic equivalence relations, we study countable Borel qua...
متن کاملUniversal Countable Borel quasi-Orders
In recent years, much work in descriptive set theory has been focused on the Borel complexity of naturally occurring classification problems, in particular, the study of countable Borel equivalence relations and their structure under the quasi-order of Borel reducibility. Following the approach of Louveau and Rosendal in [8] for the study of analytic equivalence relations, we study countable Bo...
متن کامل